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Exact Solution of a Cellular Automaton for Traffic
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We present an exact solution of a probabilistic cellular automaton for traffic
with open boundary conditions, e.g., cars can enter and leave a part of a
highway with certain probabilities. The model studied is the asymmetric exclu-
sion process (ASEP) with simultaneous updating of all sites. It is equivalent to
a special case (vmax=1) of the Nagel�Schreckenberg model for highway traffic,
which has found many applications in real-time traffic simulations. The
simultaneous updating induces additional strong short-range correlations com-
pared to other updating schemes. The stationary state is written in terms of a
matrix product solution. The corresponding algebra, which expresses a system-
size recursion relation for the weights of the configurations, is quartic, in con-
trast to previous cases, in which the algebra is quadratic. We derive the phase
diagram and compute various properties such as density profiles, two-point
functions, and the fluctuations in the number of particles (cars) in the system.
The current and the density profiles can be mapped onto the ASEP with other
time-discrete updating procedures. Through use of this mapping, our results
also give new results for these models.

KEY WORDS: Asymmetric exclusion process; boundary-induced phase
transitions; steady state; matrix product Ansatz; cellular automaton.

1. INTRODUCTION

In this paper we study a simple probabilistic cellular automaton which
describes the flow��of particles, automobiles, or some other conserved
quantity��through a one dimensional system. The particles (or cars) of the
model move on a finite lattice; at integer times they simultaneously attempt
to hop one site forward, succeeding with probability p if the site in front
of them is empty. We are interested in the case of open boundary condi-
tions (OBC), in which, simultaneously with the hopping of particles along
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the lattice, a particle enters the system with probability : at the leftmost
site if that site is empty, and if the rightmost site is occupied then the par-
ticle on that site exits with probability ;. We use a matrix product ansatz
to give a complete solution of this model.

In recent years, cellular automata models for traffic flow have gained
much attention, because they make real time traffic simulations possible
(see ref. 1 and references therein). The model studied here is one such; for
example, if the injection probability : is large the model may be regarded
as describing the situation, familiar from everyday experience, of the reduction
of a two-lane to a one-lane road by, e.g., the presence of construction work
on one lane. It is a special case of the well-known Nagel�Schreckenberg(2)

model, obtained by requiring that the parameter vmax of that model satisfies
vmax=1 so that cars move at most one lattice spacing at each integer
time. In realistic computer simulations of highway traffic, the Nagel�
Schreckenberg model is usually used with vmax=5. However, in the case of
OBC the phase diagram and density profiles are essentially independent of
vmax , (3) and in general it has been observed that, for modeling city traffic,
it is sufficient to set vmax=1.(4)

The model is in fact a synchronous update version of the asymmetric
exclusion process (ASEP), widely studied in both the physics and mathe-
matics literature.(5�7) The ASEP was originally introduced as an interacting
particle system evolving in continuous time; this evolution is equivalent to
the random sequential update (RSU) procedure, in which randomly chosen
particles hop one at a time. Other updating schemes have also been intro-
duced, including sublattice-parallel(8, 9) and ordered sequential proce-
dures, (10) and the fully parallel updating (PU) scheme, which corresponds
to the probabilistic cellular automaton described above. See Section 9 and
ref. 11 for precise definitions and a review of current knowledge about these
models. The ASEP with RSU and OBC has been exactly solved, (12�14) using
(among other methods) the matrix product ansatz, and these results have
been extended to the sublattice-parallel and ordered sequential updating
schemes.(15, 10, 16, 11) The model with PU has proved to be less tractable; for
example, parallel updating can induce strong short range correlations(17)

(these are absent under other updating schemes, see Rajewsky in ref. 1). On
the other hand, parallel updating is important in practice for traffic modeling,
both for efficiency��the PU is usually much faster than the RSU��and for
effectiveness; for example, the Nagel�Schreckenberg model is always
implemented with PU, since that method has been found to give the best
agreement with measurements on freeway traffic.(2)

We remark that if one writes ;= p;� and := p:~ and then takes the
limit p � 0, the model reduces to the ASEP with random sequential updating
and injection and extraction rates ;� and :~ , respectively.
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Let us now briefly discuss known results which are related to our
model. For the parallel dynamics on a ring (that is, with periodic boundary
conditions), the exact solution was given in ref. 2; here, in contrast to other
updating schemes, the stationary state is not a simple product measure��
occupation numbers at distinct sites are correlated. For example, if p is 1
and the density is 1�2 then the stationary state consists of free flowing par-
ticle-hole pairs, i.e., there is a strong particle-hole attraction. For p=1, the
dynamics is equivalent to rule 184 for cellular automata, for which tran-
sient properties have been analyzed.(18) For p close to 1, and :=;=1 the
scaling behavior of the lifetime of stop-start waves has been studied in
ref. 19. The steady state for arbitrary p and overall densities is obtained by
factorizing the weights of the configurations into clusters of length two;(17)

the strong short range correlations persist. The steady state for the
generalization of the model where each particle has its own hopping prob-
ability has also been solved.(20)

Tilstra and Ernst(21) studied the case of OBC and p=1. They obtained
results which they argue to be asymptotically (i.e., in the limit of large
system size) correct. In ref. 11, the system was found to be exactly solvable
on a special line in the phase diagram; from this special case and extensive
Monte Carlo simulations, the phase diagram and formulae for the current
and the bulk densities were conjectured.

We now discuss briefly the nature of our solution. For the random
sequential model, the initial breakthrough was the observation that there
exists a recursion relation relating steady state weights (unnormalized
probabilities) for a system of size N to those for a system of size N&1.(12)

Equivalently, one may write the weights as matrix elements or traces of
products of operators; requiring these operators to satisfy certain algebraic
rules then implies that the weights satisfy the recursion relations.(13) The
matrix product allows a more direct calculation of steady state correlation
functions than the recursion relations.(12, 22, 14)

For the present model we have followed a similar line of attack. When
we write the weights as operator products, however, we must require that
the operators satisfy quartic algebraic relations, which relate a product of
four operators to sums of products of three and two operators (see Sec-
tion 2). This is in contrast with the quadratic relations found in previous
works.(13, 23�31) For example, the recursion relation for the weight
fN(. . .0100. . .) relates systems of size N to systems of size N&1 and N&2
in the following way:

fN(. . .0100 . . .)=(1& p) fN&1(. . .010 . . .)

+ fN&1(. . . 000. . .)+ pfN&2(. . . 00. . .) (1.1)
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We believe that the above method (recursion relations in the system size)
should be of general interest as an analytic approach to probabilistic
cellular automata, (32�34) for which there are notoriously few exact results
(see Schadschneider in ref. 1).

We now summarize the content of the paper. In Section 2 we define
the model and provide the algebraic rules for a matrix product solution.
The next section gives the proof that they indeed describe the stationary
state; the argument proceeds by looking at blocks of consecutive particles
and holes. In Section 4 we show that the quartic algebraic rules may be
reduced to quadratic rules by assuming the operators are two by two
matrices whose elements are matrices, generally of infinite dimension, i.e.,
that the operators are rank four tensors.

The reduction to quadratic algebraic rules allows us to relate the
parallel update model to the model with other discrete-time updating
schemes. Specifically in Section 5 we show that the current and density
profile for parallel update are simply related to those quantities for ordered
sequential and sublattice parallel updating, although the relation between
higher order correlation functions is more complicated. Thus, in solving
exactly the parallel model in Sections 8�10, we also obtain new exact
results and prove conjectures for the other discrete-time models, for which
only the asymptotic current was previously known.

In Section 6 several explicit representations of the matrices are con-
structed. As a first application, we solve the case p=1 by means of 4_4
matrices in Section 7. A detailed analysis is made of the two point correla-
tion functions in order to highlight the oscillating decay of the correlation
function which is a particular feature under parallel dynamics.

We then turn to the task of obtaining the exact solution for general
p<1. The current phase diagram is derived using generating function
techniques in Section 8, and the asymptotic behavior of the density profiles
in Section 9 again using generating function techniques. The relevant
Tauberian theorems are presented in Appendix A. For finite systems, we
calculate exact combinatorial expressions for the.density profiles and two
point functions (Section 10). Technical details of the computations are con-
tained in Appendix B. By combining the results from the two preceding
sections, we compute the asymptotic bulk densities in Section 11. A discus-
sion closes the paper.

2. MODEL DEFINITION AND STEADY STATE
RECURSION RELATIONS

In this paper we study the asymmetric exclusion process with parallel
dynamics and open boundary conditions. We consider a one dimensional
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lattice, with N sites labeled 1 through N. Each site i may be occupied by
a particle, in which case a binary variable {i satisfies {i=1, or empty, in
which case {i=0. The n-tuple {=({1 ,..., {N) specifies the configuration of
the system. The dynamics is defined by requiring that at each time step
three things happen: (i) all particles on sites 1,..., N&1 with an empty site
in front of them attempt to hop forwards, succeeding with probability p;
(ii) if site 1 is empty then a particle attempts to enter the lattice there, suc-
ceeding with probability :; and (iii) if site N is occupied then the particle
there attempts to exit the lattice, succeeding with probability ;. All of these
processes are stochastically independent. Note the particle-hole symmetry:
the removal of a particle at the right end can be viewed as an injection of
a hole, so the dynamics is invariant under the combined operations of
interchange of i and N&i+1, interchange of particles and holes, and inter-
change of : and ;. For example, we have

({i) N (:, ;, p)=1&({N+1&i) N (;, :, p) (2.1)

For p, :, and ; nonzero, the configuration 1010 . . . can be reached from
any other, so the model, viewed as a finite state Markov chain, has a single
irreducible component and hence a unique steady state, (35) which we
denote by PN ; PN({) is the probability of finding a system of size N in con-
figuration { in the long time limit. In calculating PN({) it is convenient, as
noted in earlier work on the random sequential model, (12, 22, 13, 14) first to
define unnormalized weights fN({) and then to recover the probabilities via

PN({)= fN({)�ZN (2.2)

where

ZN=:
{

fN({) (2.3)

the sum taken over all configurations of size N.
The idea is now to introduce a matrix product ansatz by writing

fN({)=(W | \`
N

i=1

(1{i) E+{iD+ |V ) (2.4)

This is to be read as a product of operators E and D (an E for each empty
site and a D for each occupied site) contracted with a vector |V ) and dual
vector (W |, yielding a scalar steady state weight; for example, if N=6 and
{=010001 then fN({)=(W | EDEEED |V ) . This method originated in
work on the random sequential model, (13) in which the operators were
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represented by infinite dimensional matrices. Later papers generalizing the
original idea have employed operators represented by finite dimensional
matrices(36, 37) or higher rank infinite dimensional tensors;(38, 39) both these
approaches will be used here.

The operators E and D and vectors |V ) and (W | are required to
satisfy certain algebraic rules, listed below. We determined these rules by
finding the steady state explicitly for small system sizes and then guessing.
We prove in the next section that these rules do indeed imply that the
steady state of the system is given by (2.2) and (2.4) for general N, and in
Section 6 we construct an explicit representation, thus verifying that the
rules are consistent.

The rules for the bulk are

EDEE=(1& p) EDE+EEE+ pEE (2.5)

EDED=EDD+EED+ pED (2.6)

DDEE=(1& p) DDE+(1& p) DEE+ p(1& p) DE (2.7)

DDED=DDD+(1& p) DED+ pDD (2.8)

We also have rules involving three sites next to each boundary,

DDE |V )=(1&;) DD |V ) +(1& p) DE |V ) + p(1&;) D |V ) (2.9)

EDE |V )=(1&;) ED |V )+EE |V )+ pE |V ) (2.10)

(W | DEE=(1&:)(W | EE+(1& p)(W | DE+ p(1&:)(W | E (2.11)

(W | DED=(1&:)(W | ED+(W | DD+ p(W | D (2.12)

and two sites next to each boundary,

DD |V )=
p(1&;)

;
D |V ) (2.13)

ED |V )=
p
;

E |V ) (2.14)

(W | EE=
p(1&:)

:
(W | E (2.15)

(W | ED=
p
:

(W | D (2.16)
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These rules permit the computation of all fN({) (up to an overall constant,
which must be assumed to be nonzero). However, a rather indirect argu-
ment which we now discuss, is required when N=1 or N=2. It is con-
venient, and represents no loss of generality, to assume that

(W | V ) >0 (2.17)

We may simplify (W | ED |V ) using either (2.14) or (2.16); equating the
results shows that :(W | E |V ) =;(W | D |V ) , so that we may write

(W | D |V )=
p
;

#(W | V ) (2.18)

(W | E |V )=
p
:

#(W | V ) (2.19)

for some constant #. Similarly, (W | DED |V ) can be simplified using
either (2.12) or (2.14), and this leads to

(W | DE |V ) =(1&;)(W | D |V ) +(1&:)(W | E |V )+ p#(W | V )
(2.20)

Relations (2.5)�(2.20) allow the straightforward computation of all fN({).
Equation (2.5), when inserted in (2.4), leads to the recursion relation

(1.1). From the set of all the algebraic rules one may similarly construct a
whole set of recursion relations which uniquely specifies the steady state
weights. It is more convenient, however, to work directly with the operator
product.

The algebra is not well defined when : or ; vanishes, and the model
is not interesting when p=0. However, one may consider the random
sequential limit discussed in the introduction, := p:~ , ;= p;� , p � 0.
Assuming that the operators E, D and vectors (W |, |V ) of our algebra
have limits E� , D� , (W� | and |V� ) under this scaling, and also assuming that
# has the limit #~ =1 (as it is true for the representations we construct in
Section 6) one finds that (2.5)�(2.16) and (2.18)�(2.20) are, in the limit,
consequences of the quadratic algebra of ref. 13, which reads

D� E� =D� +E� (2.21)

D� |V� ) =
1

;�
|V� ) (2.22)

(W� | E� =
1
:~

(W� | (2.23)
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Remark 2.1. The relations (2.5)�(2.8) can be used to obtain the
steady state for our model with periodic boundary conditions (i.e., on a
ring) if (2.4) is replaced by fN({)=Tr((>N

i=1 (1&{i) E+{iD)). However,
the algebra is not needed in this simple case, because the steady state is
already known.(2)

3. PROOF OF STATIONARITY

In this section we show that the operator algebra (2.5)�(2.12) may be
used to compute the stationary state of the ASEP with parallel dynamics.
An elementary recursive argument shows that the weights fN({) defined by
(2.4) and the constant # introduced in (2.18) and (2.19) satisfy fN({)�#>0
for N�1, so that (2.2) defines a probability distribution on the set of all
system configurations. We must show that this distribution is invariant
under the dynamics. To avoid consideration of many special cases it is con-
venient to first rewrite the algebraic relations satisfied by D, E, |V ), and
(W | in more unified form.

Note first that relations (2.5)�(2.8), (2.9)�(2.12), and (2.20) all involve
four factors (from among D, E, (W |, and |V ) ) on their left hand sides.
These relations may be expressed by the single equation

XDEY=a(XDY ) XDY+a(XEY ) XEY+ pa(XY ) XY (3.1)

Here X denotes either (W | , D, or E and Y denotes D, E, or |V ). The coef-
ficient a(S) of a term S (S=XDY, XEY, or XY ) on the right hand side of
(3.1) is determined only by S itself, not the relation under consideration:

1& p, if S contains DE
1&:, if S contains (W | E

a(S)={1&;, if S contains D |V ) (3.2)

#, if S is (W | V )
1, otherwise

(Equation (3.2) represents a slight abuse of notation, since a(S) really
depends on the form of S rather than on the value of S, which may be an
operator, a vector, or a scalar; no confusion should arise.) We obtain
another form of the relation (3.1) by first writing XDEY=(1& p) XDEY+
pXDEY and then using (3.1) in the second term:

XDEY=a(XDEY ) XDEY+ pa(XDY ) XDY

+ pa(XEY ) XEY+ p2a(XY ) XY (3.3)
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The relations (2.13)�(2.16) and (2.18)�(2.19) can be similarly unified:

XD |V ) =
p
;

a(X |V ) ) X |V ) (3.4)

(W | EY=
p
:

a((W | Y )(W | Y (3.5)

Here, as in (3.1), X is (W |, D, or E and Y is D, E, or |V ). A second form
of the relations (3.4) and (3.5) is obtained as was (3.3), starting from
XFY=(1&;) XFY+;XFY for (3.4) and XFY=(1&:) XFY+:XFY for
(3.5):

XD |V ) =a(XD |V ) ) XD |V ) + pa(X |V ) ) X |V ) (3.6)

(W | EY=a((W | EY )(W | EY+ pa((W | Y )(W | Y (3.7)

Remark 3.1. (i) The set of terms on the right side of (3.1) is
obtained by omitting either or both of the middle two factors in XDEY,
and the set on the right side of (3.3) by omitting neither, either, or both.
Similarly, terms on the right side of (3.4) and (3.5) arise through the omis-
sion of one operator, and those in (3.6) and (3.7) through the omission of
zero or one. (ii) In (3.3), (3.6), and (3.7) the power of p in each term is the
number of operators omitted in obtaining that term; in (3.1), it is one less
than that number.

We now write down the stationarity condition which the weights fN({)
must satisfy. If we imagine for the moment that our lattice contains two
extra boundary sites, 0 on the left and N+1 on the right, then there are
N+1 bonds (i, i+1) across which an exchange might occur during one
step in the evolution; here by an ``exchange'' across (0, 1) or (N, N+1) we
mean the entry or exit, respectively, of a particle. Given a fixed configura-
tion {, let us write A({) for the subset of these bonds across which an
exchange can occur in { and B({) for the complementary subset of bonds
across which an exchange might have occurred in arriving at { from some
immediate predecessor; the bonds in A({) correspond to (W | E, DE, or
D |V ) in the formula (2.4) for fN({), while those in B({) correspond to
(W | D, ED, or E |V ). For C/B({) write {C for the configuration
obtained from { by making the exchanges corresponding to the bonds
in C; the configurations {C, C/B({), comprise all possible immediate
predecessors of {. Then the stationarity condition has the form

fN({)= :
C/B({)

?(C) fN({C) (3.8)

53Exact Solution of a Cellular Automaton for Traffic



Here for any subset C of B({), ?(C) is the probability that, in the con-
figuration {C, precisely the set of exchanges C (out of the set A({C) of
possible exchanges) were in fact made; thus ?(C) is a product of the following
factors:

v :, if (0, 1) # C; (1&:), if (0, 1) # A({C)"C;

v p, for each (i, i+1) # C; (1& p), for each (i, i+1) # A({C)"C

(1�i�N&1);

v ;, if (N, N+1) # C; (1&;), if (N, N+1) # A({C)"C;

with A({C)"C denoting the set of bonds belonging to A({C) but not to C.
To verify (3.8) we will use the relations above to transform each side

to a common form. We need one more concept. The configuration { may
be divided into blocks of successive zeros and ones; let E({) denote the set
of such blocks and for F/E({) let {F denote the configuration obtained
from { by omitting one operator from each block in F.

We first consider the left hand side of (3.8). In the expression (2.4) for
fN({) we apply (3.3) to each factor DE, (3.6) to each D |V ) , and (3.7) to
each (W | E, if these occur. The resulting sum over all ways of omitting
zero, one, or two operators at each of these bonds (see Remark 3.1.i) is
equivalent to a sum over all ways of omitting zero or one operators from
each block in {, so that from (3.2) and Remark 3.1.ii we obtain

:
F/E({)

p |F|(1&:)x(F) (1& p) y(F) (1&;)z(F) fN&|F|({F ) (3.9)

where |F| is the number of elements in F and x(F), y(F), and z(F)
count respectively the number of factors (W | E, DE, and D |V ) in the
expression (2.4) for f ({F ). In the special case fN&|F|({F )=(W | V ) which
can occur only if {=101010 . . . or {=010101. . ., there will be an additional
factor of #. It is important here that the coefficients a(S) in (3.3), (3.6), and
(3.7) depend only on S, so that the coefficients in (3.9) depend only on F

and in particular are independent of the order in which the relations (3.3),
(3.6), and (3.7) are applied at different bonds. Similar comments apply to
the expansions using (3.1), (3.4), and (3.7) which we will perform below.

Consider now a weight fN({C) which occurs in the sum on the right
hand side of (3.8). Each bond in C corresponds in the expression (2.4) for
this weight to a factor DE, D |V ) , or (W | E; we apply (3.1), (3.4), or (3.5)
to these factors. The result will be of the form

fN({C)=:
F

p |F|&|C|*(F) fN&|F|({F ) (3.10)
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Since each of the relations we are using involves the omission of one or two
operators (see Remark 3.1.i), the F occurring in (3.10) will be those which,
for each bond in C, contain one or both of the blocks abutting on this
bond. The total number of operators omitted is |F| and the number of
times one of the relations was used is |C|, so that the factor p |F|&|C| is
obtained directly from Remark 3.1.ii. The coefficient *(F) is a product
which contains a factor p�; if (3.4) was used (i.e., if (0, 1) # C) and p�: if
(3.5) was used ((N, N+1)) # C). It also contains factors arising from (3.2):
a factor of 1& p, 1&;, or 1&: for each application of (3.1), (3.4), or (3.5)
which preserves or generates a factor DE, D |V ) , or (W | E respectively,
and a factor # if fN&|F|({F )=(W | V ) .

When (3.10) is inserted into the right side of (3.8) the double sum over
C and F becomes a sum over all subsets F/E({),

:
F/E({)

?(C) p |F|&|C|*(F) fN&|F|({F ) (3.11)

since, given any F, one may identify the corresponding C in (3.10) as the
set of bonds in B({) for which no block belonging to F abuts on C. It is
straightforward to complete the proof by verifying that p |F|&|C|?(C) *(F)
is precisely the coefficient of fN&|F|({F ) in (3.9), and hence that (3.9) and
(3.11) agree. In particular, ?(C) *(F) contains a factor p |C|, that is, one
factor of p for each bond in C; for internal bonds these factors are present
in ?(C), while if (0, 1) # C then ?(C) contains a factor : and *(F) a factor
p�: (the argument for (N, N+1) # C is similar). If (3.9) contains a factor
(1&:), that is, if f ({F ) contains (W | E, then ?(C) contains this factor if
(0, 1) � C and *(F) if (0, 1) # C; the factors of (1& p) and (1&;) in (3.9)
are accounted for similarly.

4. REDUCTION TO A QUADRATIC ALGEBRA

In this section we show that tile quartic algebraic rules (2.5)�(2.16)
can be reduced to quadratic rules by making a convenient choice for the
operators involved. The trick is to write

D=\D1

D2

0
0+ , E=\E1

0
E2

0 + (4.1)

where D1 , D2 , E1 , and E2 are matrices of arbitrary (in general infinite)
dimension; that is, D and E are written as rank four tensors with two
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indices of (possibly) infinite dimension and the other two indices of dimen-
sion two. Correspondingly, we write (W | and |V ) in the form

(W |=((W1 |, (W2 | ), |V)=\ |V1)
|V2)+ (4.2)

where (W1 |, (W2 | , |V1) , and |V2) are vectors of the same dimension as
D1 and E1 . We will show that the operators and vectors so defined satisfy
the algebra of Section 2 if D1 , E1 , (W1 |, and |V1) satisfy the quadratic
relations

D1 E1=(1& p)[D1+E1+ p] (4.3)

D1 |V1)=
p(1&;)

;
|V1) , (W1 | E1=(W1 |

p(1&:)
:

(4.4)

and D2 , E2 , (W2 |, and |V2) satisfy

E2D2= p[D1+E1+ p] (4.5)

E2 |V2)= p |V1) , (W2 | D2=(W1 | p (4.6)

We now verify that (4.1)�(4.6) imply (2.5)�(2.20). First, by substituting
(4.1) into the bulk relations (2.5)�(2.8) one finds that to satisfy the latter
equations it is sufficient that

E1D1E1+E2 D2E1

=(1& p) E1D1+(1& p) E2D2+E1E1+ pE1 (4.7)

E1D1E1D1+E2D2 E1D1+E1 D1 E2D2+E2D2E2D2

=E1D1 D1+E2 D2D1+E1 E1D1+E1 E2D2+ pE1D1+ pE2D2 (4.8)

D1 E1

=(1& p) E1+(1& p) D1+ p(1& p) (4.9)

D1 E1D1+D1 E2D2

=(1& p) E1D1+(1& p) E2D2+D1D1+ pD1 (4.10)

These relations follow from (4.3) and (4.5). For example, the left hand side
of (4.7) becomes

(1& p) E1[D1+E1+ p]+ p[D1+E1+ p] E1

=(1& p) E1D1+ pD1E1+E1E1+ pE1 (4.11)
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which another use of (4.3) and (4.5) shows to be equal to the right hand
side. Similarly, with (4.1) and (4.2), the relations (2.13)�(2.16) involving
two sites next to the right hand boundary follow from

\D1D1 |V1)
D2D1 |V1)+=

p(1&;)
; \D1 |V1)

D2 |V1)+ (4.12)

E1D1 |V1)+E2D2 |V1) =
p
;

E1 |V1) +
p
;

E2 |V2) (4.13)

and these equations are in turn implied by (4.4) and (4.6). The conditions
(2.9) and (2.10), involving three sites next to the right boundary, are
obtained similarly, although the manipulations involved become rather
tedious. Relations at the left boundary are obtained from symmetry con-
siderations, completing the verification.

In the remainder of the paper, we will consider only representations of
the quadratic algebra having the form of (4.1) and (4.2). As we now dis-
cuss, computations in this representation are simplified by the fact that all
quantities of physical interest may be expressed in terms of D1 , E1 , (W1 |,
and |V1). This also leads to connections with other updating procedures
for the ASEP (see Section 5).

Let us first derive such an expression for the normalization constant
ZN , given by

ZN=(W | CN |V ) (4.14)

where

C=D+E=\C1

D2

E2

0 + (4.15)

and C1=D1+E1 . Now,

CN=\ G(N )
D2G(N&1)

G(N&1) E2

D2G(N&2) E2+ (4.16)

where by convention G(&1)=0 and

G(N )= :
N

n=0

K N&n(&p)n (4.17)

for N�1, with

K=(C1+ p) (4.18)
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This may be proven by first checking the case N=0 (G(0)=1) and then veri-
fying the recursion G(N+1)=C1G(N )+E2 D2G(N&1)=(K& p) G(N )+
pKG(N&1). Note that

G(N )+ pG(N&1)=KN (4.19)

From (4.16), (4.19), and the action (4.6) of E2 and D2 on the boundary
vectors, we have

(W | Cn=((W1 | Kn, (W1 | Kn&1E2) (4.20)

Cn |V ) =\ Kn |V1)
D2Kn&1 |V1)+ (4.21)

which leads to

ZN=zN+ pzN&1 (4.22)

where

zn=(W1 | Kn |V1) (4.23)

An important quantity in determining the phase diagram is the current
JN , which is the probability that a particle passes through a particular
bond in a particular time step. It is given by any one of three equivalent
expressions:

JN=:( (1&{1)) = p({i (1&{i+1)) =;({N) (4.24)

where 1<i<N; the second of these may be written using the algebra as

JN= p
(W | C i&1DECN&i&1 |V )

ZN
(4.25)

Now (4.20) and (4.21) yield

(W | CnD=((W1 | Kn&1[D1+ p], 0) (4.26)

EC n |V ) =\[E1+ p] K n&1 |V1)
0 + (4.27)

and the algebraic rule (4.3) implies that

[D1+ p][E1+ p]=K (4.28)
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so that from (4.25), (4.22), and (4.23),

JN=
pzN&1

zN+ pzN&1

(4.29)

This expression again involves only the matrices E1 and D1 and vectors
(W1 | and |V1).

We may similarly express the one-point correlation function or density
profile,

({i) N=
1

ZN
(W | C i&1DC N&i |V ) (4.30)

in terms of E1 , D1 , (W1 |, and |V1):

({i) N=
(W1 | K i&1(D1+ p) KN&i |V1)

zN+ pzN&1

(4.31)

where we have employed (4.26) and (4.21). Similar expressions are possible
for higher correlation functions; for example, the two-point correlation
function ({i (1&{j)) N is given, from (4.16), (4.26) and (4.27) by

({i (1&{j)) N=
1

ZN
(W | C i&1DC j&i&1EC N& j |V )

=
1

ZN
(W1 | K i&1(D1+ p) G( j&i&1)(E1+ p) KN& j |V1)

(4.32)

Because G(n) is an alternating sum, (4.32) is more complicated than the
corresponding expression in the random sequential case; this reflects the
fact that stronger correlations exist under parallel dynamics than under
random sequential dynamics.

In Section 10 we will give a more explicit formulae for ({i) N ; see
(10.12).

5. RELATIONS WITH OTHER MODELS

The reduction to a quadratic algebra and the expressions for the
current and correlation functions, derived in Section 4, lead to relations
between the ASEP with parallel updating and the same model with certain
other discrete-time updating procedures. The procedures in question can in
fact be defined for more general site variables and for any local dynamical
rules which assign to each configuration of a pair of sites at time t a new
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configuration at time t+1 with some given probability, and similarly to
each configuration on the leftmost or rightmost site a new configuration.
We recall these procedures briefly; see ref. 11 for precise definitions. In the
ordered sequential update sites are updated one at a time, starting at the
right end of the system and proceeding sequentially to the left end (back-
ward ordered), or vice versa (forward ordered). In the sublattice parallel
update, all site pairs i, i+1 with i even are updated at one time step and
all such pairs with i odd at the next time step. Let us denote these proce-
dures by the symbols T� , T� and Tsp (more precisely T� , T� and Tsp are
the transfer matrices for the different procedures, however since in this
discussion we do not require any properties of the transfer matrices, we do
not give detailed definitions).

It can be shown(40) using the matrix product formalism that in general
the procedures T� , T� and Tsp lead to stationary states which may be
regarded as physically equivalent. In particular, the current is independent
of the update procedure; we write J* for this common value:

J *
N =J �

N =J �
N =J sp

N (5.1)

The density profiles are also closely related (we use the notation of the
ASEP, but a corresponding result holds in general(40)):

({i) sp
N ={({i) �

N ,
({i) �

N ,
i even,
i odd,

({i) sp
N *={({i) �

N ,
({i) �

N ,
i odd
i even

(5.2)

where ({i) sp
N* is the density for Tsp after the first (even) sublattice has been

updated. Similar relations hold for some higher order correlation functions.
More is known in the special case of the ASEP, to which we limit our

discussion in what follows, based on simpler realizations of the matrix
product ansatz in that case.(15, 10, 16, 11) In particular there is another rela-
tion between density profiles,

({i) �
N =({i) �

N &J *
N (5.3)

which, with (5.2), shows that any one of ({i) �
N , ({i) �

N , and ({i) sp
N deter-

mines the others. Moreover, the asymptotic current limN � � J *
N (and

therefore the phase diagram) is known, (16) and so are the density profiles
and correlation functions in the case p=1.(15, 10)

A fully parallel updating procedure is not naturally defined for
arbitrary local dynamical rules, due to the possibility of conflict when the
rules are applied simultaneously to pairs of overlapping sites, but for the
ASEP such a fully parallel procedure, which we will denote by T | | , has
been defined in Section 2. We now want to relate this model to the ASEP
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with update procedures T� , T� , and Tsp , considered above; for the ASEP
with parallel update we work with the reduced version of the algebra estab-
lished in Section 4, in which everything is expressed in terms of the
matrices E1 and D1 and vectors (W1 | and |V1), which satisfy the algebraic
relations (4.3, 4.4). The idea is to introduce new operators e and d by

d=D1 , e=E1+ p (5.4)

so that K=E1+D1+ p=e+d. From (4.3, 4.4), the new matrices satisfy

de=d+(1& p) e (5.5)

and

d |V1) =
p(1&;)

;
|V1) , (W1 | e=(W1 |

p
:

(5.6)

Surprisingly, these equations are precisely the algebraic relations(10) for the
matrix product solution of the ASEP with forward updating, that is, the
steady state weight for the configuration { with updating T� is given by

(W1 | \`
N

i=1

(1&{i) e+{i d+ |V1) (5.7)

Writing c=e+d we see that the normalizing factor for T� is

(W1 | cN |V1)=(W1 | KN |V1) =zN (5.8)

a constant already introduced in (4.23), and the current is

J *
N =:

(W1 | ecN&1 |V1)
zN

= p
zN&1

zN
(5.9)

The density profile is given by

({i) � =
(W1 | ci&1dcN&i |V1)

zN
=

(W1 | K i&1D1 KN&i |V1)
(W1 | KN |V1)

(5.10)

These formulae imply certain simple relations between physical quan-
tities in the parallel and the ordered sequential ASEP. From (5.9) and the
formula (4.29) for the current in the ASEP with update T | | , JN= pzN&1 �
(zN+ pzN&1), we have

JN=
J *

N

1+J *
N

(5.11)
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In particular, JN<J *
N , a result which is intuitively clear. Similarly, com-

paring (5.10) with the formula (4.31) for the density profile for the parallel
ASEP leads to

({i) N=
({i) �

N +J *
N

1+J *
N

=
({ i) �

N

1+J *
N

(5.12)

where we have also used (5.3). It is also possible to derive similar formulae
for the higher correlation functions although these are not so simple. For
example, the two-point function (4.32) for T | | can be written as an alternating
sum over two-point functions of T� :

({i (1&{j))N

=
1

ZN
:

j&i&1

n=0

(&p)n [({i (1&{j&n)) �
N&n zN&n& p({i) �

N&n&1 zN&n&1]

(5.13)

although this formula appears to be too complicated to be of practical use
in obtaining ({i (1&{j)) N from ({i (1&{j)) �

N or vice versa. We emphasize
that the formulae (5.11), (5.12), and (5.13) hold for all :, ;, and p. Of
course, using the formulae established earlier in this section, we obtain rela-
tions for the one- and two-point functions with updates T� and Tsp .

The relation (5.11) for the currents and the relation for the bulk den-
sities which follows from (5.12) were already conjectured in ref. 11 (see
Table 1 in that reference).

These relations between different models have various consequences.
On the one hand, established results for T� , T� and Tsp serve as a check
for the results we will derive later; this applies to the asymptotic values of
the currents and hence to the phase diagram which we derive in Section 8,
and to some of the results in the special case p=1.

On the other hand, and more importantly, most of the results that we
will derive in later sections��explicit representations of the algebra, some of
the detailed results for the case p=1, asymptotics of density profiles, and
finite volume formulae for current and density profiles��apply to all of
the update procedures T | | , T� , T� , and Tsp . We will state these in terms
of T | | , since that procedure is the main focus of this paper, but results for
other updates are easily obtained via the formulae of this section.

Finally, we want to point out a further connection to another known
model, the ASEP with random sequential update on a ring with a second
class particle.(25, 26) In the ASEP with two species of particles a first class
particle hops onto a vacant site to its right with rate one and exchanges
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positions with a second class particle to its right with rate r, and a second
class particle hops onto a vacant site to its right with rate s. Let us sum-
marize some known results for this model. The stationary state on a ring
can be written as a matrix product state;(25) the corresponding matrix
algebra is given by (2.21)�(2.23), where now the matrix for first class par-
ticles is D� , the matrix for holes is E� , the matrix for the second class particle
is |V� )(W� |, and :~ =r, ;� =s. Since we are considering a closed system, it
is convenient to work in a grand canonical ensemble(25) with fugacity x for
first class particles. When the system contains just one second class particle,
the density of first class particles i sites ahead of the second class particle
in a ring of N sites is given by

({i) scp
N =x

(W� | C� i&1D� C� N&i&1 |V� )
(W� | C� N&1 |V� )

(5.14)

where C� =xD� +E� , with x the fugacity.
Now we can map the algebra (5.5), (5.6) onto that of (2.21)�(2.23) by

defining

(1& p) D� =d, E� =e (5.15)

and

:~ =
p
:

, ;� =
;(1& p)
p(1&;)

(5.16)

Then c=e+d is equal to C� |x=1& p , so that one can obtain the density
profile for the ASEP with T� , and hence for the ASEP with T | | , from the
grand-canonical density profile (5.14) seen from the second class particle:
comparing (5.10) and (5.14) yields

(1& p)({i) �
N |:, ;, p=({i) scp

N+1 | r=:�p, s=;(1& p)�p(1&;), x=1& p (5.17)

Other quantities in the models can be related similarly. When r=s=1,
({i) scp

N is known exactly for both finite and infinite systems, (25) yielding
({i) �

N for the case :=;= p. The single second-class particle model for
general r and s has been studied(26) in the canonical ensemble of a fixed
number of particles on the ring; to the extent to which the canonical and
grand canonical ensembles are equivalent in the large N limit, these results
should correspond with our results for the model with parallel update. We
checked that indeed the phase diagram we will derive in Section 8 trans-
lates to the correct phase diagram for the model of ref. 26.
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6. REPRESENTATIONS OF THE QUADRATIC ALGEBRA

In this section we discuss several explicit representations of the qua-
dratic algebra (4.3), (4.4). The situation is like that for other, similar matrix
product algebras: finite dimensional representations exist for a few special
parameter values, and some representation, typically infinite dimensional,
exists for all values.

In ref. 11 it was observed that for parameter values on the line

(1&:)(1&;)=1& p (6.1)

the weight of a configuration in the stationary state could be written as a
product of factors corresponding to clusters of length two. Thus, we expect
a simplification of our algebraic relations (4.3)�(4.6) along (6.1). Indeed,
for this special case the matrices E1 , D1 , E2 , D2 and the vectors (W1 |,
(W2 |, |V1), |V2) can be chosen to be scalars:

D1= p
1&;

;
, E1= p

1&:
:

(6.2)

D2=E2= p& (6.3)

|V1) =(W1 |=& (6.4)

|V2) =(W2 |=1 (6.5)

where &=- p�:; , so that E and D are 2_2 matrices.
In Section 7 we will treat the case p=1 (with : and ; arbitrary), in

which one can choose a two dimensional representation of the E1 , D1

algebra. Here, the bulk dynamics is completely deterministic. However, the
physics is still interesting, (21) since : and ; can induce different phases. The
algebra is sufficiently simple that we can derive explicit formulae for quan-
tities such as the fluctuations in the number of particles in the finite system.

Finite dimensional representations of the matrix product algebra (4.3),
(4.4) exist only along the line (6.1) and when p=1. This can be seen by
using the mapping (5.15), (5.16) in Section 5, because it has been proven(13)

that the matrices in (2.21)�(2.23) have to be infinite-dimensional except in
the case :~ +;� =1, which is by (5.16) equivalent to condition (6.1). Note
that the mapping (5.15) and (5.16) is not well-defined for p=1; however,
in this case we know that there is a finite dimensional representation,
because we construct it (see Section 7).

Let us now turn to the case of general p, :, ;, in which the representa-
tions must be infinite dimensional. Such representations are of use both as
a calculational tool and also to demonstrate that non-trivial representations
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of the algebra actually do exist. It can be shown by direct calculation that
the following expressions satisfy (4.3)�(4.6):

(W1 |=(1, 0, 0 . . .), |V1) =(1, 0, 0 . . .)t (6.6)

D1=\
p(1&;)�; b 0 0 } }

+ (6.7)

0 (1&p) (1&p)1�2 0
0 0 (1&p) (1&p)1�2

0 0 0 (1&p) }
} } }
} }

E1=\
p(1&:)�: 0 0 0 } }

+ (6.8)

b (1&p) 0 0
0 (1&p)1�2 (1&p) 0
0 0 (1&p)1�2 (1&p)
} } }
} } }

where

b2=
p

:;
[(1& p)&(1&:)(1&;)] (6.9)

and

E2= gD1 , D2= gE1 (6.10)

|V2) =;�(g(1&;)) |V1) , (W2 |=(W1 | :�(g(1&:)) (6.11)

where g=- p�(1& p). These representations are not defined when p=1,
however, as explained above, we will treat this case in Section 7. Note that
for (1&:)(1&;)=1& p we have b2=0, so that the (1, 1) elements of the
matrices decouple from the rest and we are left with 2_2 operators D, E
(see also 4.2). This proves a conjecture of ref. 11 for the structure of the
steady state. In the limit p � 0 one recovers the representations (36) and
(37) of ref. 13.

7. THE CASE p=1

In the case p=1 the hopping of particles in the bulk is deterministic;
the only source of randomness comes from the parameters : and ;. We
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shall see that : and ; can induce a high density phase (:�;) and a low
density phase (;�:). For :=;, these two phases coexist (see below). Note
that the recursion relation following from the algebraic rule (2.7) implies
that the weight for configurations containing a particle-particle-hole-hole
string is exactly zero. This is also immediately evident from the dynamical
rules, since these substrings can never be created (they are ``Gardens of
Eden'' that can never be entered once left).

One can choose 2_2 representations for the operators E1 and D1 , so
that E and D are 4_4 matrices. In particular, one can verify that the
following explicit representations satisfy (4.3)�(4.6):

(W1 |=(1, 0), |V1) =(1, 0)t (7.1)

D1=\(1&;)�;
0

&c
0 + , E1=\(1&:)�:

c
0
0+ (7.2)

(W2 |=(1�a, 0), |V2) =(1�a, 0)t (7.3)

E2=\a
0

&c
1 + , D2=\a

c
0
1+ (7.4)

where

c=�(1&:)(1&;)
:;

, a=� 1
:;

(7.5)

In order to compute expectation values, it is convenient to diagonalize
K (see (4.18)). It turns out that this can be done for :{;; we discuss this
case first, but omit details of the diagonalization. However, note that the
eigenvalues of K are 1�: and 1�;.

Using the diagonalization, it is straightforward to compute zN=
(W1 | K N |V1) by writing |V1) as a superposition of eigenvectors of K and
one obtains

zN=
(1&;) :;&N&(1&:) ;:&N

:&;
(7.6)

Equation (4.22) then leads to

ZN=
(1&;2) :;&N&(1&:2) ;:&N

:&;
(7.7)
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Thus, the current JN follows from (4.29):

JN=:;
(1&;) :N&(1&:) ;N

(1&;2) :N+1&(1&:2) ;N+1 (7.8)

From this equation, it is clear that there are only two phases (for :{;),
a high density phase when :>; and a low density phase when ;>:. As
N � �, JN approaches ;�(1+;) or :�(1+:), respectively. These results
were conjectured in refs. 11 and 21.

With the diagonalization and (4.31) it is straightforward to work out
a formula for the density profile ({i) N (:, ;) (i=1,..., N ):

({i) N=
:N+1(1&;)&;N+1:(1&:)&(;�:) i (1&:)(1&;) :N+1

(1&;2) :N+1&(1&:2) ;N+1 (7.9)

It follows that in the limit N � � the density profile in the high density
phase :>; is given by

({i)=
1

1+;
&

1&:
1+;

(;�:) i (7.10)

This implies that the density is constant for i>>1 (in particular, in the bulk
and near the right boundary), and decays exponentially near the left
boundary (on a scale given by log(:�;)) towards the bulk density:

({) bulk=
1

1+;
(7.11)

The corresponding formulae for the the low density phase ;>: can be
obtained easily directly from (7.9) or via the particle hole symmetry (2.1).
One obtains

({) bulk=
:

1+:
(7.12)

and an exponentially growing density profile near the right boundary.
These values for the bulk densities are in agreement with conjectures in
refs. 11 and 21.

The two-point correlation function (for :{;) can be computed via
(4.32) and is given by the following expression:
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({i {j) = f (:, ;, N )&1_[;N+1:2(:&1)(1+;)+:N+1(1+:)(1&;)

+;N+1:(:&1)(1+;)(&:) j&i+:N+1(1+:)(;&1)(&;)1+ j&i

+:N+1(:&1)(1+:)(1&;)(;�:) i

+:N+1(:&1)(;&1)(:&;)(&;) j (&:) i

+:N+1(:&1)(1&;)(1+;) :(;�:) j] (7.13)

with i� j and

f (:, ;, N )=(1+:)(1+;)[(1&;2) :N+1&(1&:2) ;N+1] (7.14)

From this one can derive asymptotic expressions; for example, in the high
density phase (:>;) the bulk two-point correlation function ( j=i+r,
1<<i�i+r) is

({i{i+r) bulk=
1+;(&;)r

(1+;)2 (7.15)

Note the oscillating nature of (7.15), which can be interpreted as a par-
ticle�hole attraction which is created by the simultaneous updating (see
introduction). The corresponding truncated correlation function,

g(i, j)=({i {j)&({i)({j) =
;(&;) j&i

(1+;)2 (7.16)

decays for ;{1 exponentially to zero on a scale 1�|ln ;|.
Let us now turn to the case :=;. In that case, K cannot be

diagonalized, but there exists a similarity transformation which reduces K
to Jordan normal form and makes all the necessary calculations
straightforward. We just list the results:

zN=
1

:N [N(1&:)+1] (7.17)

ZN=
1

:N [N(1&:2)+:2+1] (7.18)

JN=:
N(1&:)+:

N(1&:2)+1+:2 (7.19)
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and

({i) N=
(1&:)2 i+:N(1&:)+:

N(1&:2)+1+:2 (7.20)

which yields for large N

({i) N=
:+(1&:)(i�N )

1+:
+O(1�N ) (7.21)

The error term is small when N(1&:)>>1. Again, these expressions coin-
cide with the expected formulae.(11) The linear profile in (7.21) can be inter-
preted as arising from a uniform superposition of states with localized
shocks.

The two point correlation function is now

({i{j) =t(:, N )&1_[(1&:)(1&:2) i+:(1&:)(1&:2) j

+N:2(1&:2)+2:2+(&:) ( j&i) (:(1&:2)(i& j)

+N:(1&:2)+:(1+:2))] (7.22)

where i, j=1, 2,..., L, i� j and t(:, N )=(1+:)2 [N(1&:2)+1+:2].
When :=1 this reduces to

({i{j) :=1= 1
4 [1+(&1)( j&i)] (7.23)

which is the expected result since then in the steady state only the two
configurations in which there are no particle�particle or hole�hole pairs
occur with non zero probability. The alternating structure of (7.23) does
not show up in the density profile (which is flat here) because these two
configurations have equal weights.

For :{1, the truncated correlation function g(i, j) simplifies for large N:

g(i, j)=
1

(1+:)2 [(i�N )(1&( j�N ))(1&:)2+(&:)r :(1+(r�N ))]+O(1�N )

(7.24)

where r= j&i. Let us briefly discuss the behavior of g(i, j) for fixed i and
j=i, i+1,..., N. The oscillating part of g(i, j), which is not present with
other updating schemes, decays exponentially with j on a scale 1�|ln :|.
Therefore, for sufficiently large j, g(i, j) decays linearly to zero with slope
&((1&:)�(1+:))2 (i�N2). Figure 1 shows two examples of g(i, j) for a
system of 100 sites. The strong oscillations present for :=;=0.9 arise
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Fig. 1. The exact truncated correlation function g(i, j) in the case p=1, for i=25 versus j.
The system size is N=100. The oscillating curve (squares) was obtained for :=;=0.9, the
other curve (crosses) for :=;=0.1.

because the density in the system is nearly at its maximum value of 1�2, so
that if a site is empty its two nearest neighbors are probably occupied.
When :=;=0.1, on the other hand, each site is for some typical confi-
gurations in a region of low density (if the shock is to its right) and for
some in a region of high density (if the shock is to its left), so that the
truncated correlations are positive.

We now turn to the calculation of the fluctuations in the number M
of particles in the system, still considering the case :=;. We write

(M) = :
N

i=1

({i) (7.25)

22=(M2)&(M) 2=2 :
N

i< j

({i{j) +(M)&(M) 2 (7.26)

and must sum up the expressions (7.20) and (7.22), respectively. The first
summation is trivial:

(M) =
N2(1&:2)+N(1+:2)
2N(1&:2)+2(1+:2)

(7.27)

For :=;=1 we obtain the expected result (M) :=1=N�2. The summa-
tion of (7.22) is more tedious. It is convenient to use �N

j, i< j h(r)=
�N=1

r=1 (N&r) h(r), where h(r) is an arbitrary function of r. One is then left
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with well-known sums of the form �N&1
r=1 rk(&:)r (k=0, 1, 2). Altogether

one obtains

22(:, N )=t(:, N )&1_{N3

3
[1+:&:3&:4]&N 2:2 _1&3:&:2&:3

1+: &
&2N:2 _2+:+:2

1+: &+(1&:+:2) \ 2:
1+:+

2

&(&:)N \ 2:
1+:+

2

[N(1&:2)+1&:+:2]=+(M)&(M) 2

(7.28)

For :=1 (7.28) yields 1�4 for N odd, and 0 for N even, as expected.
We now take N>>1 and keep only the highest order in N. This gives

22=
N2

12
(1&:)2

(1+:)2 (7.29)

which can be rewritten, using (7.21), as

22=
N 2

12
(\right&\left)

2 (7.30)

where \right (\left) is the asymptotic density at position N(1) given by
(7.21). This is precisely the result which is to be expected when one con-
siders the linear profile as a superposition of uniformly distributed random
shock positions (step functions). The two-point correlation functions for
the model with sublattice-parallel updating, obtained in refs. 9 and 15 also
lead to (7.30), although the corrections to 22 at lower order in N are dif-
ferent in both models.

8. DERIVATION OF THE PHASE DIAGRAM FOR GENERAL p

In this section we determine the asymptotic behavior, for all values of
:, ;, p, of the quantity zN=(W1 | KN |V1) introduced in (4.23) and hence,
through (4.29), of the current JN ; the different possible asymptotic forms
determine the distinct phases of the model. Our method is to study the
generating function

30(*)# :
�

N=0

*NzN (8.1)
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We will use the explicit representation (6.6)�(6.8) of the operators D1 and
E1 and the vectors (W1 | and |V1) , and will write |n) , n=0, 1,..., for the
basis of the space on which D1 and E1 act, and (n| for the dual basis, so
that |V1) =|0) and (W1 |=(0|. Note that z0=(W1 | V1)=1.

From (6.7) and (6.8) it follows that K#E1+D1+ p has the form

K=\
c b 0 0 } }

+
b 2&p (1&p)1�2 0
0 (1&p)1�2 2&p (1&p)1�2

0 0 (1&p)1�2 2&p }
} } }
} }

where c= p(:+;&:;)�:; and b is given by (6.9). From (8.2) we find

(0| KN+1 |0) =c(0| KN |0)+b(1| K N |0) (8.3)

(1| KN+1 |0) =b(0| KN |0)+(2& p)(1| KN |0)

+(1& p)1�2 (2| KN |0) (8.4)

and for n>1,

(n| KN+1 |0) =(1& p)1�2 (n&1| KN |0)

+(2& p)(n| KN |0) +(1& p)1�2 (n+1| KN |0) (8.5)

If we now define the generating functions

3n= :
�

N=0

*N(n| KN |0) (8.6)

we easily obtain from (8.3)�(8.5), using (n | 0)=$n, 0 , that

(1&c*) 30=b*31+1 (8.7)

(1&(2& p) *) 31=b*30+(1& p)1�2 *32 (8.8)

and for n>1,

(1&(2& p) *) 3n=(1& p)1�2 *3n&1+(1& p)1�2 *3n+1 (8.9)

The solution of (8.9) is

3n=Aun for n>0 (8.10)
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where A is a constant to be determined from (8.8) and

u=
1&*(2& p)&- (1+*p)2&4*

2*(1& p)1�2 (8.11)

(the positive root is discarded being non-analytic at *=0). Writing 31=Au
and 32=Au2 in (8.7) and (8.8), and eliminating A from the resulting equa-
tions, yields

30=
1

1&c*&b2*u�(1& p)1�2 (8.12)

From (8.12), (8.11), and some tedious algebra, we find that

30(*)=
:;[2(1& p)(:;& p2*)&:;b2(1& p*)&:;b2

- (1+ p*)2&4*]
2p4(1&;)(1&:)(*&*hd)(*&*ld)

(8.13)

where

*ld=
:( p&:)
p2(1&:)

(8.14)

*hd=
;( p&;)
p2(1&;)

(8.15)

Equation (8.13) shows that 30 has square root singularities at the two
points

*\
mc=

2& p\2 - 1& p
p2 (8.16)

which, if we assume that the parameters :, ;, and p lie in the relevant range
0�:, ;, p�1, are on the positive real axis. Thus 30 is naturally double
valued and has single valued determinations (branches) on each of two
sheets��copies of the complex plane cut along the real axis between the two
roots. We are primarily interested in the behavior on the first sheet, the
plane on which, for * small and real, the square root in (8.13) is positive and
hence 30(0)=1 (see (8.1)). 30 also has two simple poles, at *ld and *hd .

As discussed in Appendix A, the coefficients zN in the power series
(8.1) will grow as N #*N

0 , where *0 is the singularity of 30(*) on the first
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sheet nearest to the origin (*0>1 always) and # is determined by the
nature of that singularity. Thus

lim
N � �

zN

zN+1

=*0 (8.17)

and hence

lim
N � �

JN=
p*0

1+ p*0

(8.18)

Three regions in the parameter space must be considered according to
which of the three singularities is closest to the origin. As we shall see, the
singularities *ld and *hd may or may not be present on the first sheet of the
complex plane. For the parameter values where one or both do occur they
are closer to the origin than *&

mc . It is convenient to introduce the quantity

q=q( p)=1&- 1& p (8.19)

in discussing the resulting phase diagram (thus 2q& p=q2 and *&
mc=

(q�p)2). The phase diagram is shown in Fig. 2.

(i) The maximum current region: q<: and q<; (region C in
Fig. 2). For these parameter values the numerator in (8.13) vanishes at *ld

Fig. 2. (taken from ref. 11): Phase diagram for the ASEP with parallel (synchronous) update
for p=0.5. C is the maximum current phase, A and B are the low and high density phase,
respectively. The straight dashed lines are the boundaries between phase AI and AII (BI and
BII). The curved dashed line is the line given by (6.1) and intersects the line :=; at :=;=
1&- 1& p=q (see Section 8). The inserts show typical density profiles in the various phases;
note that the profile is qualitatively the same in region AI (BI) and in the portion of region
AII (BII) below the curved dashed line.

74 Evans et al.



and *hd when the square root is positive: the poles lie on the second sheet
and the singularity closest to the origin in the first sheet is *&

mc . Then (A.7)
implies that

zN=
:2;2b2(1& p)1�4

- *&
mc

2 - ? (:&q)2 (;&q)2

1

N - N (*&
mc)N

+O(N&5�2(*&
mc)N) (8.20)

and hence from (8.18),

lim
N � �

JN=
p*&

mc

1+ p*&
mc

=
1&- 1& p

2
(8.21)

Note that the prefactor in (8.20) is singular at the boundaries :=q, ;=q
of the maximum current region; near these boundaries one needs larger
values of N for the leading term in (8.20) to well approximate zn .

(ii) The low density region: :<; and :<q (region A in Fig. 2). In
this region the pole *ld lies on the first sheet and is in fact the singularity
of 30(*) closest to the origin, and from (A.5),

zN=
;( p+:2&2:)
( p&:)(;&:)

1
(*ld)&N+o(s&N) (8.22)

for some s>*ld . Thus from (8.18),

lim
N � �

JN=
p*ld

1+ p*ld

=
:( p&:)
p&:2 (8.23)

(iii) The high density region: ;<: and ;<q (region B in Fig. 2).
The asymptotic behavior of zN here is obtained from (8.22) by interchanging
: and ; and replacing *ld by *hd . In particular,

lim
N � �

JN=
;( p&;)
p&;2 (8.24)

9. ASYMPTOTICS OF THE DENSITY FOR GENERAL p

In this section we calculate the behavior of the particle density near
the left end of the system in the limit of infinite system size and for all
values of :, ; and p; behavior near the right end can be recovered from the
symmetry (2.1). For m, n�0 let

tm, n= lim
N � �

(W1 | KN&m&nDm
1 Kn |V1)

zN
(9.1)
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and introduce the generating function

9(x, y)= :
m, n�0

xmyntm, n (9.2)

Our goal is to calculate 9x(0, y). For it follows from (4.31) and (8.17) that
\n , the density at the (n+1)st site to the left of the right boundary in the
infinite volume limit (where n=0, 1,...), is given by

\n= lim
N � �

({N&n) N= lim
N � �

(W1 | KN&1&n(D1+ p) Kn |V1)
zN+ pzN&1

=
t1, n+ p*0

1+ p*0

(9.3)

so that the generating function 8( y) for the \n is

8( y)= :
n�0

yn\n=
1

1+ p*0

:
n�0

yn(t1, n+ p*0)

=
1

1+ p*0 \9x(0, y)+
p*0

1& y+ (9.4)

Now t0, n=1 for all n, so that 9(0, y)=(1& y)&1, and from (4.4)
and (8.17), tm, 0=(*0p(1&;)�;)m for all m, so that 9(x, 0)=;�
(;&x*0p(1&;)). From (4.3) it follows that D1 K=D2

1+(1& p) K+ pD1

and this, together with (8.17), implies that for m, n�1, tm, n satisfies the
recursion

tm, n=tm+1, n&1+*0(1& p) tm&1, n+*0 ptm, n&1 (9.5)

Thus

9(x, y)= :
m�0

xmtm, 0+ :
n�1

ynt0, n+ :
m, n�1

xmyntm, n

=9(x, 0)+[9(0, y)&1]

+ :
m, n�1

xmyn[tm+1, n&1+*0(1& p) tm&1, n+*0ptm, n&1]

=9(x, 0)+[9(0, y)&1]+
y
x

[9(x, y)&9(0, y)&x9x(0, y)]

+*0(1& p) x[9(x, y)&9(x, 0)]

+*0 py[9(x, y)&9(0, y)] (9.6)
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Multiplying (9.6) by &x, collecting terms, and using the relation
9(0, y)&1= y9(0, y), we see that 9 satisfies the equation

D(x, y) 9(x, y)=A(x, y)+xy9x(0, y) (9.7)

where

D(x, y)=*0(1& p) x2&(1&*0 py) x+ y (9.8)

A(x, y)=&y[x(1&*0p)&1] 9(0, y)&x[1&*0(1& p) x] 9(x, 0) (9.9)

Now the branch of the curve D(x, y)=0 given by x=!&( y), where

!\( y)=
1&*0py\- 2( y)

2*0(1& p)
(9.10)

with

2( y)=(1+*0py)2&4*0y (9.11)

are the roots in x of D(x, y)=0, passed through the origin. But 9(x, y) is
analytic at the origin, so that (9.7) can hold only if the right hand side
vanishes on this curve. This yields the desired equation for 9x(0, y):

9x(0, y)=&
A(!&( y), y)

!&( y) y
=

!&( y)(1&*0p)&1
!&( y)(1& y)

+
;[1&*0(1& p) !&( y)]

y[;&!&( y) *0p(1&;)]

(9.12)

If we insert (9.12) into (9.4) and rationalize the resulting expression we
obtain

8( y)=
1

1+ p*0 \
2y&1+*0py

2y(1& y)
&

- 2( y)
2y(1& y)

+
;( p&;) - 2( y)

2yp2(1&;)(*hd&*0 y)
+

;(( p&;)&*0py(2&;& p))
2yp2(1&;)(*hd&*0y) + (9.13)

We will always assume that the parameters in (9.13) lie in the physical
region 0�:, ;, p�1. Under this assumption the two roots of the equation
2( y)=0 lie on the positive real axis, so that we may regard 8 as defined
on two sheets, as we did 30 in the previous section. The first sheet
corresponds, for y real and small, to - 2( y)>0 in (9.13).
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From (9.13) we see that the singular points of 8 (which may coincide
for some parameter values) are:

v A simple pole at y=1.

v Two square root singularities y\ , the roots of the equation
2( y)=0; from (8.16),

y\=*\
mc �*0 (9.14)

Since *0�*&
mc , these singularities satisfy 1� y&� y+ .

v An apparent simple pole at

y1=
*hd

*0

=
;( p&;)

*0 p2(1&;)
(9.15)

However, the numerators of the third and fourth terms in (9.13) may be
equal in magnitude and opposite in sign when y= y1 , cancelling this
singularity; from (9.15) and (9.13) we find that this happens when

p(1&;)&;(2&;& p)=&p(1&;) - 2( y1) (9.16)

A little algebra shows that the squares of the two sides in (9.16) are equal,
so that (9.16) holds on the first sheet, and the pole at y1 is absent there,
if p(1&;)&;(2&;& p)�0, i.e., if ;�q.

v An apparent simple pole at y=0. From (9.4), however, it follows
that 8 is regular at the origin on the first sheet. This can also be seen
directly from (9.13) using - 2(0)=1.

We now analyze this generating function in the various regions of the
phase plane of the system.

(i) The maximum current region: q<: and q<; (region C in
Fig. 2). In this region *0=*&

mc , so that from (9.14) the square root
singularity y& coincides with the pole at y=1; thus 2( y) has a factor
(1& y) and from (9.11),

2( y)=(1& y)(1& p2(*&
mc)2 y) (9.17)

Since q<; there is no pole at y1 on the first sheet, and thus y=1 is the
singularity closest to the origin and controls the asymptotics of the coef-
ficients \n of 8. We write \n=\ (1)

n +\ (2)
n +\ (3)

n , where \ (i)
n is the contribu-

tion from the ith term in (9.13) (the fourth term is regular at y=1), and
calculate the asymptotic form of each \ (i)

n in turn.
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The first term in (9.13) is f1( y)(1& y)&1, where f1( y)=(2y&1+
*&

mc py)�(2y(1+ p*&
mc)). Thus, from (A.5) and (A.2),

\ (1)
n = f1(1)+o(s&n)= 1

2+o(s&n) (9.18)

for any s>1. The second therm is & f2( y)(1& y)&1�2, where f2( y)=
- 1& p2(*&

mc)2 y�(2y(1+ p*&
mc)) and we have used (9.17). From (A.7),

(A.3), and (A.4), then,

\ (2)
n =&f2(1) \1&

1
8n+

1

- ?n
& f $2(1)

1

2n - ?n
+O(n&5�2)

=&
- 1&q

2
1

- ?n
+

p2+6q2(1&q)

32q2
- 1&q

1

n - ?n
+O(n&5�2) (9.19)

The third term is f3( y)(1& y)1�2, where

f3( y)=
;( p&;) - 1& p2(*&

mc)2 y
2yp2(1&;)(1+ p*&

mc)(*hd&*&
mc y)

(9.20)

As above

\ (3)
n =&f3(1)

1

2n - ?n
+O(n&5�2)

=
- 1&q ;( p&;)

4(;&q)2

1

n - ?n
+O(n&5�2) (9.21)

Adding (9.18), (9.19), and (9.21) gives the density \n to order n&3�2:

\n=
1
2

+
- 1&q

2
1

- ?n

+\ p2+6q2(1&q)

32q2
- 1&q

+
; - 1&q( p&;)

4(;&q)2 + 1

n - ?n
+O(n&5�2) (9.22)

In the pz0 limit, with the scaling := p:� , ;= p;� , this result corresponds to
that determined in ref. 13. The last coefficient (9.22) is singular on the ;=q
boundary of the maximum current region and in particular at p=1; see the
comment following (8.20).

(ii) The low density region: :<; and :<q (region A in Fig. 2). Here
*0=*ld . Since y\=*\

mc �*0>1, the square root singularities lie strictly to
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the right of the pole at y=1. Let us again write \n=\ (1)
n +\ (2)

n +\ (3)
n +\ (4)

n ,
with \ (i)

n the contribution from the ith term in (9.13). Each of the first two
terms in (9.13) has a simple pole at y=1, so that from (A.7),

\ (1)
n +\ (2)

n =_2y&1+*ld py&- 2( y)
2y(1+ p*ld) &y=1

+o( y&n
& )

=
:(1&:)
p&:2 +o( y&n

& ) (9.23)

where we have used - 2(1)=( p&2:+:2)�( p(1&:)) (note that this is the
positive square root). To go further in the asymptotics we must consider
separately two subregions of the low density region, and their common
boundary (see Fig. 2).

Subregion AI: ;<q. In this subregion *ld<*hd<*&
mc . Since ;<q, the

pole at y1=*hd �*ld>1 lies on the first sheet and satisfies 1< y1< y& , and
thus makes the next contribution to the asymptotics beyond (9.23). Thus

\ (3)
n +\ (4)

n =_;(( p&;) - 2( y)+( p&;)&*ld py(2&;& p))
2yp2(1+ p*0)(1&;) *hd &y= y1

_\*hd

* ld +
&n

+o(s&n)

=
(1&:)( p&2;+;2)

( p&:2)(1&;) \:( p&:)(1&;)
;( p&;)(1&:)+

n+1

+o(s&n) (9.24)

for some s>*hd �*ld . The asymptotics to order o(s&n) are obtained by
adding (9.23) and (9.24):

\n=
:(1&:)
p&:2 +

(1&:)( p&2;+;2)
( p&:2)(1&;) \ :( p&:)(1&;)

;( p&;)(1&:)+
n+1

+o( y&n
& ) (9.25)

Further corrections, which arise from the singularity at y& , could be
calculated; the leading order is O( y&n

& �n3�2).

Subregion AII: ;>q. Now *ld<*&
mc and 1< y& ; the next contribu-

tion to the asymptotics beyond (9.23) comes from the square root
singularity at y& , present in the second and third terms of (9.13). Now

2( y)=(1& y�y&)(1& yp2*&
mc *ld) (9.26)
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so that, writing \ (2)
n * for the contribution to \ (2)

n from this singularity, we
have

\ (2)
n *+\ (3)

n

=
1

1+ p* ld _&
- 1& yp2*&

mc *ld

2y(1& y)
+

;( p&;) - 1& yp2*&
mc*ld

2yp2(1&;)(*hd&*ld y) &y= y&

_\&
y&n

&

2n - ?n++O( y&n
& �n5�2)

=&
:( p&:)(1& p)1�4

- *&
mc (* ld&*hd)

2( p&:2)(*&
mc&*ld)(*&

mc&*hd)
1

n - ?n \
:( p&:)

(1&:)(q+1& p)+
n

+O \ 1

n2
- n \

:( p&:)
(1&:)(q+1& p)+

n

+ (9.27)

From (9.23) and (9.27),

\n=
:(1&:)
p&:2 &

:( p&:)(1& p)1�4
- *&

mc (*ld&*hd)
2( p&:2)(*&

mc&*ld)(*&
mc&*hd)

_
1

n - ?n \
:( p&:)

(1&:)(q+1& p)+
n

+O \ 1

n2
- n \

:( p&:)
(1&:)(q+1& p)+

n

+ (9.28)

The AI�AII boundary: ;=q. Here y1= y& and the leading correction
to \n beyond the constant term (9.23) is an O(n&1�2) contribution from the
third term in (9.13). From (9.23) and (9.26),

\n=
:(1&:)
p&:2 +_ ;( p&;) - 1& yp2*&

mc* ld

2(1+ p*ld) yp2(1&;) *hd&y= y1

y&n
1

- ?n
+O \ y&n

1

n - ?n+
=

:(1&:)
p&:2 +

:( p&:)(1& p)1�4

( p&:2) � 1&;
;( p&;)

_
1

- ?n \
:( p&:)
;2(1&:)+

n

+O \ y&n
1

n - ?n+ (9.29)

The low-density results (9.25), (9.28), and (9.29) agree with ref. 13 in
the pz0 limit.
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(iii) The high density region: ;<: and ;<q (region B in Fig. 2). In
this region the generating function is obtained by the substitution *0=*hd

in (9.13). After some tedious algebra, this leads to

8( y)=
p&;
p&;2

1
1& y

(9.30)

so that the density is constant:

\n=
p&;
p&;2 (9.31)

10. EXACT EXPRESSIONS FOR FINITE SYSTEMS

In this section we obtain exact and explicit expressions for the current
and density profile for finite systems and all values of :, ; and p. We shall
do this by using the algebraic rules (4.3) and (4.4). This provides a com-
plementary approach to that of Sections 8 and 9 where large N properties
are calculated directly.

Our first task is to evaluate zn=(W1 | Kn |V1). We proceed by
writing Kn as a sum of irreducible (with respect to rule (4.3)) strings in the
following manner

Kn= :
n

r=0

an, r :
r

q=0

E r&q
1 Dq

1 (10.1)

It turns out that an, r is given by the expression

an, r= :
n&r

t=0 _\
n

r+t+\
n&r&1

t +&\ n+1
r+t+1+\

n&r&2
t&1 +& (1& p)t (10.2)

with the conventions ( X
0 )=1 and ( X

&1)=0 for any integer X. The proof of
(10.2) is left to Appendix B. Here we check a few simple cases. From (10.2)
and our conventions for the binomial coefficients we find

an, n=1

an, n&1=n&(1& p)

an, n&2=\n
2+&(1& p)

an, n&3=\n
3++_2 \n

2+&\n+1
2 +& (1& p)&(1& p)2 (10.3)
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which yield using (10.1)

K= p+(D1+E1)

K2= p+(1+ p)(D1+E1)+(D2
1+E1D1+E 2

1)

K3=2p& p2+(2+ p)(D1+E1)+(2+ p)(D2
1+E1D1+E 2

1)

+(D3
1+E1D2

1+E 2
1 D1+E 3

1) (10.4)

as can be verified by direct calculation. From (10.2) we determine an exact
expression for zN by using the action of D1 , E1 (4.4):

zN= :
N

r=0

aN, r
( p(1&;)�;)r+1&( p(1&:)�:)r+1

( p(1&;)�;)&( p(1&:)�:)
(10.5)

where, without loss of generality, we have taken (W1 | V1) =1. Together
with (4.29), (10.5) yields an exact expression for the current.

To check the limit p � 0 we use the identity

:
�

i=&� \ N
X&i+\

M
Y+i+=\N+M

X+Y + (10.6)

in order to obtain

an, r � \2n&r&1
n&r +&\2n&r&1

n&r&1 +=
r(2n&r&1)!

n!(n&r)!
(10.7)

This agrees with Eq. (39) of ref. 13.
Also consider p=1, then (10.2) becomes an, r=( n

r) and

zN=
(1&;) ;&(N+1)&(1&:) :&(N+1)

(1&;)�;&(1&:)�:
(10.8)

One can check that this recovers the results (7.6) and (7.17) of Section 7.
In order to write down the density profile we use an expression

derived in Appendix B:

D1Kn=(1& p) :
n&1

r=0

A(r) Kn&r+ :
n

r=0

an, rDr+1
1 (10.9)
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where an, r is given by (10.2) and

A(m)= :
m&1

t=0

1
m \m

t +\
m

t+1+ (1& p)t (10.10)

with the convention A(0)=1. It can be checked that

pA(n&1)=an, 0 for n>0 (10.11)

Inserting (10.9) into (4.31) yields

({i) N=Z&1
N __pzN&1+(1& p) :

N&i&1

r=0

A(r) zN&1&r

+zi&1 :
N&i

r=0

aN&i, r( p(1&;)�;)r+1& (10.12)

Expression (10.12) together with (10.5) gives an exact expression for
the density profile of parallel updating for all system sizes. Through the
mappings of Section 5 if also provides exact expressions for the density
profiles of ordered and sublattice parallel updating.

The Case :=;= p. More can be said in the special case of :=;= p
where many formulae simplify considerably. We take advantage of this to
simplify the expression for the density profile and to write the two-point
correlation functions as a sum of one point correlation functions.

First we note that in this case (10.5) simplifies as follows:

zN= :
n

r=0

:
n

t=r _\
n
t+\

n&r&1
t&r +&\n+1

t+1+\
n&r&2
t&r&1+& (r+1)(1& p)t

= :
n

t=0
_\n

t+\
n+1

t +&\n+1
t+1+\

n
t&1+& (1& p)t

= :
n

t=0

1
n+1 \

n+1
t +\n+1

t+1+ (1& p)t=A(n+1) (10.13)

where A(m) is given by (10.10) and we have used

:
t

r=0
\M&r

t&r + (r+1)=\M+2
t + (10.14)

From our mapping of the model onto the ASEP with a second class par-
ticle, described in Section 5, one can check that (10.13) is precisely formula
(4.10) in ref. 25.
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We also find using the representation (6.6)�(6.8) that

(D1+ p) K&K(D1+ p)=K(E1+ p)&(E1+ p) K=D1E1&E1 D1

=(1& p) |V1)(W1 | (10.15)

Thus the density profile is given by

({i) N=({ i+1) N+
(1& p)

ZN
A(i) A(N&i&1)

=
(1& p) �N&i

n=0 A(N&n) A(n)+ pA(N )
A(N+1)+ pA(N )

(10.16)

One can also use (10.15) to relate the two-point correlation function (4.32)
to one-point correlations:

({i (1&{j))N

=({i (1&{j&1)) N+
(&p) j&i&1

ZN
A(N& j+i+1)

+(1& p)
A(N& j+1)

ZN
:

j&i&2

n=0

(&p)n ({i) j&2&n Zj&2&n (10.17)

=
1

ZN
:

j

l=i+1

(&p) l&i&1 A(N&l+i+1)

+
(1& p)

ZN
:

j

l=i+2

A(N&l+1) :
l&i&2

n=0

(&p)n ({i) l&2&n Z l&2&n

(10.18)

11. THE DENSITY IN THE BULK

In this section we combine the information derived from generating
functions in Sections 8 and 9 with the exact calculations of the preceding
section to obtain expressions for the bulk density of the system, that is, for
the large-N limit of ({i) N at constant %=i�N. As we will see, this bulk
density is constant except on the boundary of the low and high density
regions, and its value is may be guessed by taking the n � � limit in the
asymptotics of Section 9, that is, in (9.22), in (9.25) and (9.28), and in
(9.31) (where no limit is needed). However, it needs to be shown that this
limit indeed gives the correct bulk density, and we shall do so here.

85Exact Solution of a Cellular Automaton for Traffic



The key to the calculation is to study the difference in densities at
successive sites. Writing zn=zn(:, ;, p), zn*=zn(1, ;, p), and z-

n=zn( p, p, p),
we have from (10.12), (10.5), and (10.13),

({i) N=
pzN&1(:, ;, p)+(1& p) �N&i&1

r=0 z-
r&1 zN&1&r+[ p(1&;)�;] zi&1 z*N&i

zN+ pzN&1
(11.1)

and hence the density difference 2\i=({i) N&({i&1) N is given by

2\i=
[ p(1&;)�;](zi&1z*N&i&zi&2z*N&i+1)&(1& p) z-

N&i&1zi&1

zN+ pzN&1
(11.2)

We analyze the asymptotic (N � �) behavior of (11.2) in various parts of
the phase plane; properties of the bulk are obtained by the scaling i=%N,
0<%<1, and we will also be interested in the transition regions i<<N,
N&i<<N. The boundary regions in which i or N&i remains finite were
investigated in Section 9.

The point :=;= p always lies in the maximum current region, so
that by (8.20), z-

ntCn&3�2(*&
mc)&n for large n, where here and below C

designates some unspecified constant. When (:, ;, p) lies in the maximum
current region, so does (1, ;, p), so that zn and zn* have this same asymp-
totic form and thus for N, i, and N&i large, 2\itCN 3�2i &3�2(N&i)&3�2.
Thus in the bulk 2\i=O(N&3�2) and hence the density in the bulk is con-
stant. Moreover,

({N&i) N&\bulk= :
N&i

j=%N

2\j (11.3)

vanishes as i, N � �, so that (9.22) implies that this bulk density has value
1�2.

When (:, ;, #) lies in the low density region and ;<q (i.e., in sub-
region I), (1, ;, p) lies in the high density region, and thus from (8.22) and
reflection symmetry, zntC*&n

ld and z*ntC*&n
hd ; since here *hd<*&

mc ,
2\itC(*ld �*hd) (N&i). As above, this implies that the bulk density is con-
stant and equal to its value at the left end of the system, which, from (9.31)
and the reflection symmetry, is :(1&:)�( p&:2). The argument in subregion
II is similar, with z*ntCn&3�2(*&

mc)&n and 2\itC(N&i)&3�2 (*ld�*&
mc)(N&i);

the bulk density is the same. By reflection symmetry the bulk density in the
high density phase is constant and equal to ( p&;)�( p&;2).

The case :=;<q requires special attention. Here a slight extension of
the arguments of Section 8 shows that zntCn*&n

ld . As in the subregion I
case above, z*ntC*&n

hd and the z-
n term in (11.2) can be neglected; since
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*hd=*ld , 2\itCN &1, so that the density profile is linear. The values of
({i) N at the left and right ends of the system are, from (9.31) and the sym-
metry, :(1&:)�( p&:2) and ( p&;)�( p&;2), respectively. This linear
profile may, as usual, be interpreted as a superposition of shocks.

12. SUMMARY

In this paper, we have presented an exact solution for the steady state
of a simple cellular automaton describing traffic flow: the ASEP with
parallel (synchronous) updating and open boundary conditions. The solu-
tion is based on recursion relations in the system size for the steady-state
weights of the configurations, or, equivalently, on formulae for these
weights as matrix elements of operators satisfying a quartic algebra. By
writing these operators as rank four tensors, we were also able to express
the relevant physical quantities in terms of a simpler matrix algebra in
which the operators satisfy quadratic relations.

We used several different methods to extract explicit expressions for
observables from the matrix algebra. The first applied when p=1, in which
case a two dimensional representation of the quadratic algebra cubists; this
made it possible to obtain analytic expressions, in both the finite and the
infinite system, for the current and for one and two point correlation func-
tions. The results confirmed conjectures in refs. 11 and 21. The two point
function is particularly interesting, because its oscillating behavior directly
reflects the particle-hole attraction caused by the parallel updating. For
:=; (still with p=1) we obtained also closed formulae for the fluctuations
in the number of particles (cars) in the system. Second, for general p we
derived exact formulae, in finite systems, for the current and the one point
function, and for the two point function in the case :=;= p; the method
was essentially an inductive use of the relations of the matrix algebra. The
resulting formulae involve rather complicated combinatorial expressions in
which it is difficult to take the limit of infinite system size. Third, again for
general p, we used the analytic properties of generating functions to compute
asymptotic expressions for the current (and therefore the phase diagram) and
for density profiles near the boundaries of the system. Finally, we combined
the results of the last two methods to determine the density in the bulk.

Our results confirm the phase diagram conjectured in ref. 11. It is
similar to that of random sequential updating:(13, 14) there are three phases
and, for example, near the right boundary we found exponential decay to
the bulk density in the low density phase, algebraic decay to the bulk den-
sity in the maximum current phase, and a constant density profile in the
high density phase. As p increases, the portion of the phase plane corre-
sponding to the maximum current phase shrinks until at p=1 only the
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high and low density phases are present. It would be of interest to see if the
phase diagram could be predicted by simple physical considerations such
as those of ref. 42.

By considering mappings of the matrix algebra used here to those
applicable to other updating schemes, we can directly translate all our
results (finite size and asymptotics) for the current and the profiles to the
case where the update of the ASEP is done in discrete time but not
simultaneously (specifically, with the ordered sequential update and sublat-
tice parallel updates). As similar mapping of algebras shows that our
results apply to a system of particles on a ring, with one second class par-
ticle, in the grand canonical ensemble. Since relatively few exact properties
of the discrete time updating schemes were previously known��essentially
only the asymptotic current(16)��we obtain new results for these models.
For example, we verify all conjectured results in Table I of ref. 11 (these
describe bulk properties) and derive new formulae for density profiles both
for finite systems and asymptotically. The simple translation rules for the
current and one-point functions (independent of the system size or any
other parameters) are surprising, since the two point function of the ASEP
with parallel updating is very different from that for the other updating
schemes. It would be interesting to investigate if similar relations are true
not only for the ASEP but for other models.

APPENDIX A. ASYMPTOTICS FROM GENERATING
FUNCTIONS

The asymptotic behavior of the coefficients hn of a generating function
h(t)=��

n=0 hn tn can frequently be determined, up to order o(s&n), from
knowledge of the singularities of h in a disk |t|<r witch r>s. We analyze
below the two cases of this sort. Recall that for any real # and complex
number t* we have the following Taylor series,

(1&t�t*)#= :
�

n=0

a#, n \ t
t*+

n

, a#, n=O(n&#&1) (A.1)

For application to Sections 8 and 9 we will need the special cases

a&1, n=1 (A.2)

a&1�2, n=
1

- ?n
&

1

8n - ?n
+O \ 1

n2
- n+ (A.3)

a1�2, n=&
1

2n - ?n
+O \ 1

n2
- n+ (A.4)
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Case 1. If the only singularities of h in the disc |z|<r are simple
poles at t1 ,..., tm and ci=limt � ti

(1&t�ti) h(t), then h&�m
i=1 ci (1&t�ti)

&1

is analytic in |t|<r and hence for any s<r we have, from (A.1) and (A.2),

hn=c1 t&n
1 + } } } +cm t&n

m +o(s&n) (A.5)

Case 2. Suppose that h(t) has simple poles at ti , with ci defined as
above, as well as a power singularity at some point t0>0; we assume that
|ti |<t0 for i=1,..., m and that h(t) can be written in the form

h(t)= g(t)(1&t�t0)# (A.6)

where the only singularities of g in the disk are the poles. Then for any
k�0,

hn= :
m

i=0

ci t&n
i + :

k

j=0

bja#+ j, nt&n
0 +O(n&#&k&2t&n

0 ) (A.7)

where bj= g( j)(t0)(&t0) j� j !. To verify (A.7) write hn=(2?i)&1 �C h(t)
t&n&1 dt, where the contour C has m+1 components C0 , C1 ,..., Cm . For
i�1, Ci is a small circle, traced clockwise, around the point t i , and gives
the term ci t&n

i in (A.7). C0 follows the circle |t|=s counter-clockwise from
just above to just below the positive real axis, then the real axis to t0+=
(for = very small), then a small circle of radius = clockwise around t=t0 ,
then the real axis to t=s. In evaluating the integral on C0 we choose k so
that k+#>0 (proving the result for such a k proves it also for smaller k)
and write g(t)=�k

j=0 bj (1&t�t0) j+ gk+1(t)(1&t�t0)k+1. The contribution
of �C0

bj (1&t�t0) j+# t&n&1 dt is precisely b ja#+ j, n t&n
0 . There are two terms

in the remaining contribution: the integral over the large circle is O(s&n),
while the integral back and forth over the real axis and around the small
circle is, by our choice of k, a constant multiple of �s

t0
gk+1(t)_

(1&t�t0)k+1+# t&n&1 dt, which is easily estimated by the saddle point
method to be O(n&#&k&2t&n

0 ).

APPENDIX B. PROOF OF FORMULAS (10.2) AND (10.9)

Proof of (10.2). In this appendix we shall prove

Kn= :
n

r=0

an, r :
r

q=0

E r&q
1 Dq

1 (B.1)
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where an, r is given by the following expression

an, r= :
n&r

t=0
_\ n

n&r&t+\
n&r&1

t +&\ n+1
n&r&t+\

n&r&2
t&1 +& (1& p)t

(B.2)

We first require a preliminary result:

(D1+ p) E n
1=(1& p)n (D1+ p)+ :

n&1

m=0

(1& p)m E n&m
1 (B.3)

which is easy to prove by induction using (4.3): for n=1 one has
(D1+ p) E1=(1& p)(D1+ p)+E1 ; then assuming (B.3) and right multi-
plying by E1 yields

(D1+ p) En+1=(1& p)n [(1& p)(D1+ p)+E]+ :
n+1

m=2

(1& p)m E n&m+1
1

(B.4)

=(1& p)n+1 [D1+ p]+ :
n+1

m=1

(1& p)m E n&m+1
1 (B.5)

hence (B.3) is proven by induction.
Using (B.3) eventually leads to the following recursion for an, r

an+1, r=an, r&1+ :
n&r

m=0

an, r+m(1& p)m for 1�r�n (B.6)

an+1, 0= :
n

m=0

an, m p(1& p)m (B.7)

an+1, n+1=an, n (B.8)

with boundary condition a0, 0=1. To see this left multiply (B.1) by K

Kn+1=(E1+D1+ p) :
n

r=0

an, r :
r

q=0

E r&q
1 Dq

1 (B.9)

= :
n+1

r=1

an, r&1 :
r&1

q=0

E r&q
1 Dq

1+ :
n

r=0

an, r :
r

q=0

(1& p)r&q [D1+ p] Dq
1

+ :
n

r=1

an, r :
r&1

q=0

:
r&q&1

m=0

(1& p)m E r&q&m
1 Dq

1 (B.10)
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where we have relabeled the indices r, q in the first term of (B.10) and used
(B.3) to generate the second two terms. Relying on not a little dexterity in
relabeling and manipulating sums one can develop the second two terms of
(B.10) as follows

:
n

r=0

an, r :
r

q=0

(1& p)r&q [D1+ p] Dq
1

= :
n

r=0

an, r[(1& p)r p+Dr+1
1 ]

+ :
n

r=1

an, r :
r

q=1

[(1& p)r+1&q Dq
1+(1& p)r&q pDq

1]

= :
n

r=0

an, r[(1& p)r p+Dr+1
1 ]+ :

n

r=1

an, r :
r

q=1

(1& p)r&q Dq
1

= :
n

r=0

an, r[(1& p)r p+Dr+1
1 ]+ :

n

q=1

:
n&q

r=0

an, r+q(1& p)r Dq
1 (B.11)

and

:
n

r=1

an, r :
r&1

q=0

:
r&q&1

m=0

(1& p)m E r&q&m
1 Dq

1

= :
n&1

m=0

:
n

r=m+1

:
r&m&1

q=0

an, r(1& p)m E r&q&m
1 Dq

1

= :
n&1

m=0

:
n&m

r=1

:
r&1

q=0

an, r+m(1& p)m E r&q
1 Dq

1

= :
n

r=1

:
r&1

q=0

:
n&r

m=0

an, r+m(1& p)m E r&q
1 Dq

1 (B.12)

When the expressions (B.12), (B.11) are inserted back into (B.10), the
second term in the square brackets of (B.11) becomes the q=r component
of the first term of (B.10), and after relabeling indices the third term of
(B.11) becomes the q=r component of (B.12), leading to

Kn+1= :
n+1

r=1

:
r

q=0

an, r&1 E r&q
1 Dq

1

+ :
n

r=1

:
r&1

q=0

:
n&r

m=0

an, r+m(1& p)m E r&q
1 Dq

1+ :
n

m=0

p(1& p)m an, m

(B.13)

From (B.13) one can read off (B.6)�(B.8).
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Now assume that an, r can be written as

an, r= :
n&r

t=0

dn, r, t(1& p)t (B.14)

Inserting (B.14) into (B.6), (B.7) and (B.8) respectively yields

dn+1, r, t=dn, r&1, t+ :
t

m=0

dn, r+m, t&m for 1�r�N (B.15)

dn+1, 0, t= :
t

m=0

dn, m, t&m& :
t&1

m=0

dn, m, t&1&m (B.16)

dn, n, t=$t, 0 (B.17)

In order to show that

dn, r, t=\ n
r+t+\

n&r&1
t +&\ n+1

r+t+1+\
n&r&2

t&1 + (B.18)

satisfies (B.15)�(B.17) we employ two well known identities

:
N&M

i=0 \N&i
M&i+=\N+1

M + (B.19)

\N
M+=\N&1

M ++\N&1
M&1+ (B.20)

Using (B.19) yields

:
t

m=0

dn, r+m, t&m=\ n
r+t+\

n&r
t +&\ n+1

r+t+1+\
n&r&1

t&1 + (B.21)

Then (B.20) becomes

dn, r&1, t+ :
t

m=0

dn, r+m, t&m

=\n+1
r+t +\

n&r
t +&\ n+2

r+t+1+\
n&r&1

t&1 + (B.22)
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which is the expression (B.18) required to satisfy (B.15). Similarly with the
aid of (B.19) the repeated use of (B.20) one finds

:
t

m=0

dn, m, t&m& :
t&1

m=0

dn, m, t&1&m

=\n
t+\

n
t+&\n+1

t+1+\
n&1
t&1+&\ n

t&1+\
n

t&1++\n+1
t +\n&1

t&2+
=\n+1

t +\n
t+&\n+2

t+1+\
n&1
t&1+ (B.23)

thus satisfying (B.16) when dn, r, t is given by (B.18). Finally when the con-
ventions ( X

0 )=1 and ( X
&1)=0 for all integers X are imposed, (B.18) implies

dn, n, t=\ n+1
n+1+t+\

&1
t +&\ n+1

&t&1+\
&2
t&1+=$t, 0 (B.24)

thus satisfying (B.17).

Proof of (10.9). Here we prove

D1Kn=(1& p) :
n&1

r=0

A(r) Kn&r+ :
n

r=0

an, rDr+1
1 (B.25)

First we note

Dn
1[E1+ p]=(1& p)n [E1+ p]+ :

n&1

m=0

(1& p)m Dn&m
1 (B.26)

which is proven in a similar fashion to (B.3).
To prove (B.25) by induction, one can check the case n=0 or n=1,

then right multiply the rhs of (B.25) by K, using (B.26) to obtain

D1K n+1=(1& p) :
n&1

r=0

A(r) Kn+1&r+ :
n

r=0

an, rDr+1
1 [D1+E1+ p]

=(1& p) :
n&1

r=0

A(r) Kn+1&r+ :
n

r=0

an, r Dr+2
1

+ :
n

r=0

an, r(1& p)r+1 (E1+ p)

+ :
n

r=0

:
r

m=0

an, r(1& p)m Dr+1&m
1 (B.27)
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The third term of (B.27) becomes using (B.7)

:
n

r=0

an, r(1& p)r+1 (E1+ p)=
1& p

p
an+1, 0(E1+ p) (B.28)

The fourth term of (B.27) may be developed as follows

:
n

r=0

:
r

m=0

an, r(1& p)m D r+1&m
1

= :
n

m=0

:
n&m

r=0

an, r+m(1& p)m Dr+1
1

= :
n

r=0

:
n&r

m=0

an, r+m(1& p)m Dr+1
1

=
an+1, 0

p
D1+ :

n

r=1

[an+1, r&an, r&1] Dr+1
1 (B.29)

where (B.6), (B.7) have been used to obtain the final equality. Putting
(B.27), (B.28) and (B.29) together yields

D1K n+1=(1& p) :
n&1

r=0

A(r) Kn+1&r+
1& p

p
an+1, 0 K+an+1, 0 D1

+ :
n

r=1

an+1, rDr+1
1 +Dn+2

1

=(1& p) :
n

r=0

A(r) Kn+1&r+ :
n+1

r=0

an+1, rD r+1
1 (B.30)

which agrees with (B.25), thereby proving (10.9) by induction.
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